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We propose a scheme of realizing an optical diode at the few-photon level. The system consists of a
one-dimensional waveguide coupled asymmetrically to a two-level system. The two or multiphoton transport
in this system is strongly correlated. We derive exactly the single and two-photon current and show that the
two-photon current is asymmetric for the asymmetric coupling. Thus the system serves as an optical diode
which allows transmission of photons in one direction much more efficiently than the opposite.
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I. INTRODUCTION

A diode is an essential circuit element that allows unidi-
rectional propagation of signal. Faraday rotator based on
magneto-optic effect serves as an optical diode or optical
isolator in most modern optical laboratories. There are also
several proposed or demonstrated optical diodes relying on
cascaded nonlinearities.1 In this paper we propose a scheme
to realize an optical diode at the few-photon level by making
photons strongly interacting. Different schemes2–6 have been
explored to produce strong nonlinearities at the few-photon
level. Recently a new approach has been suggested by Shen
and Fan �SF� �Ref. 7� to create photon-photon nonlinear in-
teractions by coupling a bare two-level system �TLS� with a
one-dimensional �1D� continuum for photons, such as a pho-
tonic crystal waveguide. Local interactions at the TLS induce
strong correlations between photons. Based on a similar
mechanism of realizing nonlinear interactions, all optical
single-photon transistor has been proposed by using surface-
plasmon modes of a conducting nanowire.8

SF consider a system of a one-dimensional waveguide
with left and right-moving photons side coupled to a TLS.
The two-photon transport has been studied by them using a
generalized Bethe-ansatz technique which properly takes
into account the open boundary conditions of the problem.7

It has been shown that the exact two-photon scattering eigen-
states of this system include a two-photon bound state that
passes through the TLS as a composite single particle. In this
paper we study a similar electro-optical system that consists
of a TLS directly coupled to a 1D photonic waveguide �see
top of Fig. 1�. Also the coupling of the TLS with the wave-
guide is asymmetric. In a line-defect photonic waveguide the
asymmetry in coupling may be realized by modulating the
periodicity of photonic crystal at any side of the TLS locally.
It is also possible to fabricate asymmetric coupling by work-
ing with a system of superconducting transmission line reso-
nators and a dc-superconducting quantum interference de-
vice based charge qubit9,10 or a system consisting of a bare
two-level emitter interacting with the surface-plasmon
modes of a conducting nanowire.8,11,12 We construct the ex-
act single and two-photon scattering states for our model by
directly solving the single and two-particle Schrödinger
equations. Then we evaluate the single and two-particle cur-
rent in the system. We find an interesting asymmetry in the
two-photon current for asymmetric coupling between the

TLS and the waveguide. This occurs due to a redistribution
of energy and momentum of photons after scattering from
the TLS in the absence of spatial symmetry. Thus, our model
acts as an optical diode which permits photons to transmit in
a direction more easily compared to the opposite direction. It
is easier to achieve asymmetry in coupling for the direct-
coupled TLS-waveguide system compared to the side-
coupled TLS waveguide.

II. MODEL

We consider a simple spin-boson type Hamiltonian to de-
scribe the direct-coupled TLS-waveguide system. The
Hamiltonian, H=���z /2+�i,k��ikaik

† aik+�i,kVik�aik
† +aik�

��++�−�, where the first term represents the free TLS with
transition energy � �setting �=1�; the second term corre-
sponds to the free photons with energy �ik in the left �i=1�
and the right �i=2� side of the TLS; and the last term de-
scribes the interaction between the TLS and the photons.
Here aik�aik

† � is the annihilation �creation� operator for pho-
tons in the ith side of the TLS and V1k�V2k� is the coupling
between the photon in the left �right� side of the TLS and the
TLS. �−=ag

†ae��+=ae
†ag� is the lowering �raising� ladder op-

erator where ag
†�ae

†� is the creation operator of the ground
�excited� state of the TLS. Then we unfold the model by
performing standard manipulations for impurity models with
� being away from the cutoff of the linear dispersion �see
bottom of Fig. 1�. Thus obtained the real-space Hamiltonian
of the system as chiral 1D field theories is given by

H = − i �
�=1,2

vg
�� dxb�

†�x��xb��x� + �ae
†ae

+ �Ṽ1b1
†�0��− + Ṽ2b2

†�0��− + H.c.� , �2.1�

where vg
1�vg

2� is the group velocity of the photons and
b1

†�x��b2
†�x�� is a photon creation operator at x in the left

�right� side of the TLS. V1k�V2k� is replaced by a frequency

independent Ṽ1�Ṽ2�. Here �+�n ,−�= �n ,+� and �+�n ,+�=0,
where �n ,�� represents the full system with n photons and
the TLS in the excited �+� or ground �−� state. Next we
redefine the field operators in the two sides of the TLS,
c��x�=	vg

�b��x�. We assume here that vg
� is real and x inde-

pendent. Thus we find
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H = − i �
�=1,2

� dxc�
†�x��xc��x� + �ae

†ae

+ �V1c1
†�0��− + V2c2

†�0��− + H.c.� �2.2�

with V�= Ṽ� /	vg
�. It shows that the renormalized coupling

can be asymmetric for different group velocities of photons

at the two sides of the TLS even for Ṽ1= Ṽ2. We define the
current operator in the system as I= i�H ,N1−N2� /2, where
N1�N2� is the total number of photons in the left �right� side
of the TLS. Then we find I= i�V1c1

†�0��−−V2c2
†�0��−

−H.c.� /2. We want to find the expectation value of the cur-
rent operator in the steady state. Thus we need to find the
exact scattering eigenstates of the H. We here observe that
under the transformation, c1�x�= �V1ce�x�+V2co�x�� /V and

c2�x�= �V2ce�x�−V1co�x�� /V with V=	V1
2+V2

2, the
Hamiltonian in Eq. �2.2� breaks into two decoupled parts of
even and odd field operators; i.e., H=He+Ho, where
He=−i
dxce

†�x��xce�x�+�ae
†ae+V�ce

†�0��−+�+ce�0�� and
Ho=−i
dxco

†�x��xco�x�. In the transformed basis, the He con-
tains the interaction term between the even modes with the
TLS while the Ho is just the kinetic energy of the noninter-
acting odd modes. The current operator in the even-odd basis
is given by

I =
i

2
�V1

2 − V2
2

V
ce

†�0��− +
2V1V2

V
co

†�0��− − H.c.� . �2.3�

III. SINGLE-PHOTON DYNAMICS

First we construct the exact single-photon scattering states
of the full system and derive the corresponding single-
photon current for a photon incoming from the left or the
right side of the TLS. The single-photon eigenstates of the
full system are

1
	2�

� dxA1�gk�x�ce
†�x� + ek�+� + B1hk�x�co

†�x���0,− �

�3.1�

with A1 and B1 being arbitrary constants to satisfy the non-
equilibrium boundary conditions, i.e., the incident photon is
coming from which side of the TLS. ek is the excitation
amplitude of the TLS. We find different coefficients in the
eigenstates by solving the following equations of motion ob-
tained from the stationary single-photon Schrödinger
equation,

− i�xgk�x� − kgk�x� + Vek	�x� = 0,

�� − k�ek + Vgk�x�	�x� = 0,

− i�xhk�x� − khk�x� = 0, �3.2�

where gk�0�= �gk�0−�+gk�0+�� /2 and gk�x� is a single-
photon plane wave for x
0. We find gk�x�=eikx���−x�
+rk��x�� , hk�x�=eikx , ek=V / �k−�+ iV2 /2� and rk=ek /ek

�,
where ��x� is the step function. We define the single-photon
scattering states as �1;k���2;k�� for those with an incoming
photon of momentum k from the left �right� side of the TLS.
By choosing A1=V1 /V , B1=V2 /V�A1=V2 /V , B1=−V1 /V�
in Eq. �3.1� we find the state �1;k���2;k��. We then evaluate
the steady-state single-photon current in �1;k�,

I�1;k� = �1;k�I�1;k�

= −
L
�

V1
2V2

2

V3 Im�ek1
�

=
2L
�

�1�2

�k − ��2 + ��1 + �2�2 �3.3�

with ��=V�
2 /2. Here L is the total length of the full system.

As expected in the absence of any background phase shifts
�which may arise if the TLS is embedded in a cavity� the
single-photon current shows a Breit-Wigner-type �i.e.,
Lorentzian� line shape around the resonance k=� �see top
two plots in Fig. 2�. For symmetric coupling, i.e., �1=�2
=�, a single photon at resonance frequency is completely
transmitted from one side of the TLS to the other side. Note
here that the transmission and reflection coefficient for the
direct-coupled model are similar to the reflection and trans-
mission coefficient of the side-coupled model,7 a fact which
also occurs for waveguide-resonator systems.13 We also
evaluate �2;k�I�2;k� and we find ��1;k�I�1;k��= ��2;k�I�2;k��
for arbitrary V1 , V2, i.e, the current is the same in magnitude
for an incident photon coming from either side of the TLS.
This even can be understood from the current expression in

1 2

V V1 2

TLS

21

a

b

FIG. 1. �Color online� �a� A schematic of the two-level system
being directly coupled to photons in a one-dimensional waveguide.
�b� Unfolded model for the photons in the left �1� and right �2� side
of the two-level system.
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FIG. 2. �Color online� Plot of the single-photon current
�I�1;k1� , I�1;k2��, the two-photon current change
�	I�1;k1 ,k2� ,	I�2;k1 ,k2�� with the transition energy �. Here k1

=0.3, k2=0.7, V1=0.45, and V2=0.15. Unit for I�1;k1� , I�1;k2� is
different from that of 	I�1;k1 ,k2� ,	I�2;k1 ,k2�.
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Eq. �3.3� which remains the same under exchange of V1 and
V2.

IV. TWO-PHOTON DYNAMICS AND OPTICAL DIODE

Next we construct the two-photon scattering eigenstates
for this model. This is a nontrivial task. The two-photon
incoming state for both the photons being incident from the
left side of the TLS is given by

� dx1dx2
1

2�	2
k�x1,x2�

1
	2

c1
†�x1�c1

†�x2��0,− � , �4.1�

where k�x1 ,x2�= �eik1x1+ik2x2 +eik1x2+ik2x1� with k= �k1 ,k2�.
We decompose the two-photon incoming state into ee, oo,
and eo subspaces and determine the full scattering eigen-
states in the different subspaces separately. Note that to cal-
culate the expectation value of the current operator in Eq.
�2.3�, we need to express the two-photon scattering eigen-
state in the space of free photons as well as the TLS.14 This
is similar to the single-photon scattering states in Eq. �3.1�.
Thus we differ here from the approach of SF �Ref. 7� where
the outgoing scattering states are expressed by a complete
orthonormal basis spanning the free two-photon Hilbert
space.

The two or multiphoton transport in one-dimensional
waveguides for the direct-coupled TLS model is strongly
correlated. The local interaction at the TLS induces strong
correlations between photons by preventing multiple occu-
pancies of photons at the TLS. Thus the Hamiltonian in Eq.
�2.1� is equivalent to a bosonic version of the popular single-
impurity Anderson model with an infinite repulsive interac-
tion between photons at the TLS. When photons are incident
upon the TLS, one of the photon gets absorbed and re-
emitted by the TLS and then that interferes with the other
photons in the waveguide. By the process of absorption and
spontaneous emission the TLS mediates strong interactions
between photons. The general two-photon scattering states
are of the form

� �A2�g�x1,x2�
1
	2

ce
†�x1�ce

†�x2� + e�x1�	�x2�ce
†�x1��+�

+ B2j�x1;x2�ce
†�x1�co

†�x2� + f�x1�	�x2�co
†�x1��+�

+ C2h�x1,x2�
1
	2

co
†�x1�co

†�x2��dx1dx2�0,− � , �4.2�

where g�x1 ,x2�=g�x2 ,x1� and h�x1 ,x2�=h�x2 ,x1� due to bose
statistics of photons. e�x��f�x�� is the probability amplitude
of one photon in the e�o� subspace while the TLS in the
excited state. Here A2, B2, and C2 identify the boundary con-
ditions for the incoming photons. Like the single-photon case
we here determine all the functions in Eq. �4.2� using the
two-photon Schrödinger equation with the total energy of the
two photons E=k1+k2. Thus, we obtain the following linear
equations:

�− i�x1
− i�x2

− E�g�x1,x2� +
V

	2
�e�x1�	�x2� + 	�x1�e�x2�� = 0,

�− i�x − E + ��e�x� +
V

	2
�g�0,x� + g�x,0�� = 0,

�− i�x1
− i�x2

− E�j�x1;x2� + V	�x1�f�x2� = 0,

�− i�x − E + ��f�x� + Vj�0;x� = 0,

�− i�x1
− i�x2

− E�h�x1,x2� = 0.

We solve the above equations with the initial conditions that
the functions g�x1 ,x2�, j�x1 ;x2�, and h�x1 ,x2� in the region
x1 ,x2
0 satisfy the form of the corresponding plane wave
functions given in Eq. �4.1�. We also use g�0,x�=g�x ,0�
��g�0+ ,x�+g�0− ,x�� /2 and j�0,x���j�0+ ,x�+ j�0
− ,x�� /2. As there is no scattering in the oo subspace of two
photons, h�x1 ,x2� is given by symmetric two-photon plane-
wave state. In our solution we explicitly separate out the
two-photon bound state which arises in the ee subspace. We
find

g�x1,x2� =
1

2�	2
gk1

�x1�gk2
�x2�

+
V2

	2�
ek1

ek2
ei��−iV2/2�x2ei�E−�+iV2/2�x1

���x1 − x2���x2� + �1 ↔ 2� ,

e�x� =
1

2�
�gk1

�x�ek2
+ gk2

�x�ek1
� +

iV

�
ek1

ek2
ei�E−�+iV2/2�x��x� ,

j�x1;x2� =
1

2�
�gk1

�x1�hk2
�x2� + gk2

�x1�hk1
�x2�� ,

f�x� =
1

2�
�ek1

hk2
�x� + ek2

hk1
�x�� ,

h�x1,x2� =
1

2�	2
k�x1,x2� . �4.3�

The second terms in g�x1 ,x2� and e�x� are contributions
from the two-photon bound state. Both of these terms decay
to zero with �x1−x2� or �x� tending to infinity; this is an es-
sential characteristic of the bound state. The existence of
two-particle bound states in the presence of two-particle in-
teractions has been discussed before in the context of elec-
tron and photon transport.7,15 We emphasize that due to in-
teractions at a localized region two photons can exchange
energy and momentum between themselves with the con-
straint of a fixed total energy and momentum. This redistri-
bution in energy creates a strong interaction between
photons.
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Now we calculate the expectation value of the current
operator in the two-photon scattering state �1;k1 ,k2� for both
the incoming photons from the left of the TLS, i.e., A2
=V1

2 /V2, B2=V1V2 /V2, and C2=V2
2 /V2,

�1;k1,k2�I�1;k1,k2� = −
L
�

V1
2V2

2

V3 Im�ek1
+ ek2

�

+
V1

4V2
2

�2V5 Im�ek2

2 ek1

� + ek1

2 ek2

� � . �4.4�

The first term in Eq. �4.4� is the contribution from two non-
interacting photons and is similar to Eq. �3.3�. The last part
in Eq. �4.4� is the change in two-photon current �call
	I�1;k1 ,k2�� due to photon-photon interactions and
	I�1;k1 ,k2� comes from the two-photon bound-state part of
the full wave function. Also note that 	I�1;k1 ,k2� is a factor
L smaller than the noninteracting current; this signifies that
the probability of finding two photons near the TLS at any
time is order of 1 /L for a 1D system of size L with two
photons. L will disappear in the multiphoton current in the
system.16 We can have 	I�1;k1 ,k2� being similar in magni-
tude of noninteracting current for an optimal two-photon in-
teraction. This occurs when two photons are incident upon
the TLS within a time delay of absorption and spontaneous
emission by the TLS. We plot 	I�1;k1 ,k2� vs � for a fixed
energy of incident photons in Fig. 2. We find from Fig. 2 that
	I�1;k1 ,k2� changes sign near the single-photon resonance
energy, i.e., �=k1 or k2. A positive 	I�1;k1 ,k2� can be inter-
preted as bunching of two photons after scattering where as a
negative 	I�1;k1 ,k2� is antibunching.

We similarly derive the current for two photons being
incident from the right side of the TLS, i.e., A2=V2

2 /V2, B2
=−V1V2 /V2, and C2=V1

2 /V2,

�2;k1,k2�I�2;k1,k2� =
L
�

V1
2V2

2

V3 Im�ek1
+ ek2

�

−
V1

2V2
4

�2V5 Im�ek2

2 ek1

� + ek1

2 ek2

� � . �4.5�

We see that the contribution from two noninteracting photons
�the first part in Eq. �4.5�� is similar in magnitude to that in
Eq. �4.4�. But the change in two-photon current 	I�2;k1 ,k2�
�last part in Eq. �4.5�� is different in magnitude from
	I�1;k1 ,k2� for V1�V2. We plot −	I�2;k1 ,k2� versus � in
Fig. 2. Hence we find that ��1;k1 ,k2�I�1;k1 ,k2��
� ��2;k1 ,k2�I�2;k1 ,k2�� for V1�V2, i.e., the directly coupled
1D waveguide-TLS system acts as an optical diode for two-
photon transport. The mechanism behind diode like behavior
in the present system is the redistribution of energy and mo-
mentum of photons after passing through the TLS. The
asymmetry in the coupling generates asymmetry in the dis-
tribution of energy and momentum of photons coming from
the left or right of the TLS. In fact,
�	I�1;k1 ,k2�� : �	I�2;k1 ,k2��=V1

2 /V2
2 is exactly same to the ra-

tio of the bound-state contributions for both the incoming
photons from the left or right of the TLS. We remind that the
redistribution of energy and momentum of scattered photons

occurs via the two-photon bound states. A similar phenom-
enon for electrons has been studied recently.15,17 Note that
the present system acts as a diode in the fully quantum re-
gime for a minimal two photons. It also differs from the
classical spin-boson thermal rectifier18 operating at a finite
temperature bias. We here define �I�k1 ,k2�
= ��1;k1 ,k2�I�1;k1 ,k2��− ��2;k1 ,k2�I�2;k1 ,k2�� and the dimen-
sionless rectification, R=2�I�k1 ,k2� / ��	I�1;k1 ,k2��+ �	I
�2;k1 ,k2���. We also quantify the asymmetry in the coupling
by �=2�V1−V2� / �V1+V2�. We plot �I�k1 ,k2� and R with �
for a fixed incident energy of two photons and a fixed � in
Fig. 3. We use a constant V2 and change V1 in Fig. 3. We find
that �I�k1 ,k2� first increases with � and then falls after a
maximum value. On the contrary, R increases monotonically
with � and finally saturates at its maximum value 2. The
multiphoton transport is also correlated in this system and it
acts as an optical diode for many photons too. The technique
employed here can be used to find current with three or more
incoming photons.

V. CONCLUDING REMARKS

The proposed optical diode may have potential applica-
tions to build quantum circuits for optical quantum informa-
tion processing and quantum computation.19 However, the
practical realization of the optical diode depends on achiev-
ing strong and asymmetric coupling between the TLS and
the photons in the waveguide. Strong light-matter interaction
is the main focus of much research in quantum optics for
quite sometime and has been demonstrated successfully in
the recent past.9,11,20 The asymmetry in coupling has not
been much discussed before. The optical diode can be fabri-
cated either with a TLS in a single waveguide or with a TLS
being coupled to two different waveguides. It is technically
challenging to fix a TLS at the right location in a single
waveguide.9,20,21 Again there may be high insertion loss for a
TLS being coupled to two different waveguides. Recently an
ultrahigh-Q coupled resonator optical waveguides with low
losses has been realized.22 A strong direct coupling between
an emitter and surface plasmons in a nanowire has also been
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FIG. 3. �Color online� Plot of �I�k1 ,k2� vs asymmetry in cou-
pling �. Inset shows rectification R vs �. Here k1=0.3, k2=0.7,
V2=0.15, and �=0.5.
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achieved.11 Hence it seems to be possible to reduce the in-
sertion loss. In fact, the emitter surface plasmons system is a
promising candidate for realizing asymmetry in coupling as
the coupling between the emitter and surface plasmons is
completely geometrical and depends on the diameter of the
conducting nanowire.12

ACKNOWLEDGMENTS

The discussions with S. Mookherjea, D. I. Schuster, and
A. Wallraff on the experimental realization of asymmetric
coupling are gratefully acknowledged. The work has been
funded by the DOE under Grant No. DE-FG02-05ER46204.

*droy@physics.ucsd.edu
1 M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, J.

Appl. Phys. 76, 2023 �1994�; K. Gallo, G. Assanto, K. R.
Parameswaran, and M. M. Fejer, Appl. Phys. Lett. 79, 314
�2001�; J. Hwang, M. H. Song, B. Park, S. Nishimura, T.
Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe,
Nat. Mater. 4, 383 �2005�.

2 A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, Phys.
Rev. Lett. 79, 1467 �1997�.

3 S. E. Harris and Y. Yamamoto, Phys. Rev. Lett. 81, 3611 �1998�.
4 K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, Phys.

Rev. A 68, 013803 �2003�.
5 K. Koshino and H. Ishihara, Phys. Rev. A 70, 013806 �2004�.
6 K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E.

Northup, and H. J. Kimble, Nature �London� 436, 87 �2005�.
7 J.-T. Shen and S. Fan, Phys. Rev. Lett. 98, 153003 �2007�; Phys.

Rev. A 76, 062709 �2007�.
8 D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin,

Nat. Phys. 3, 807 �2007�.
9 A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J.

Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature
�London� 431, 162 �2004�.

10 L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, Phys.
Rev. Lett. 101, 100501 �2008�.

11 A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S.

Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, Nature �Lon-
don� 450, 402 �2007�.

12 D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin,
Phys. Rev. B 76, 035420 �2007�.

13 Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. E 62, 7389
�2000�.

14 A. Nishino, T. Imamura, and N. Hatano, Phys. Rev. Lett. 102,
146803 �2009�; T. Imamura, A. Nishino, and N. Hatano, Phys.
Rev. B 80, 245323 �2009�.

15 D. Roy, Phys. Rev. B 81, 085330 �2010�.
16 A. Dhar, D. Sen, and D. Roy, Phys. Rev. Lett. 101, 066805

�2008�.
17 D. Roy, A. Soori, D. Sen, and A. Dhar, Phys. Rev. B 80, 075302

�2009�.
18 D. Segal and A. Nitzan, Phys. Rev. Lett. 94, 034301 �2005�.
19 The Physics of Quantum Information, edited by D. Bouw-

meester, A. Ekert, and A. Zeilinger �Springer, Berlin, 2000�.
20 K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S.

Gulde, S. Fält, E. L. Hu, and A. Imamoglu, Nature �London�
445, 896 �2007�.

21 I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J.
Vuckovic, Science 320, 769 �2008�.

22 M. Notomi, E. Kuramochi, and T. Tanabe, Nat. Photonics 2, 741
�2008�.

FEW-PHOTON OPTICAL DIODE PHYSICAL REVIEW B 81, 155117 �2010�

155117-5

http://dx.doi.org/10.1063/1.358512
http://dx.doi.org/10.1063/1.358512
http://dx.doi.org/10.1063/1.1386407
http://dx.doi.org/10.1063/1.1386407
http://dx.doi.org/10.1038/nmat1377
http://dx.doi.org/10.1103/PhysRevLett.79.1467
http://dx.doi.org/10.1103/PhysRevLett.79.1467
http://dx.doi.org/10.1103/PhysRevLett.81.3611
http://dx.doi.org/10.1103/PhysRevA.68.013803
http://dx.doi.org/10.1103/PhysRevA.68.013803
http://dx.doi.org/10.1103/PhysRevA.70.013806
http://dx.doi.org/10.1038/nature03804
http://dx.doi.org/10.1103/PhysRevLett.98.153003
http://dx.doi.org/10.1103/PhysRevA.76.062709
http://dx.doi.org/10.1103/PhysRevA.76.062709
http://dx.doi.org/10.1038/nphys708
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1103/PhysRevLett.101.100501
http://dx.doi.org/10.1103/PhysRevLett.101.100501
http://dx.doi.org/10.1038/nature06230
http://dx.doi.org/10.1038/nature06230
http://dx.doi.org/10.1103/PhysRevB.76.035420
http://dx.doi.org/10.1103/PhysRevE.62.7389
http://dx.doi.org/10.1103/PhysRevE.62.7389
http://dx.doi.org/10.1103/PhysRevLett.102.146803
http://dx.doi.org/10.1103/PhysRevLett.102.146803
http://dx.doi.org/10.1103/PhysRevB.80.245323
http://dx.doi.org/10.1103/PhysRevB.80.245323
http://dx.doi.org/10.1103/PhysRevB.81.085330
http://dx.doi.org/10.1103/PhysRevLett.101.066805
http://dx.doi.org/10.1103/PhysRevLett.101.066805
http://dx.doi.org/10.1103/PhysRevB.80.075302
http://dx.doi.org/10.1103/PhysRevB.80.075302
http://dx.doi.org/10.1103/PhysRevLett.94.034301
http://dx.doi.org/10.1038/nature05586
http://dx.doi.org/10.1038/nature05586
http://dx.doi.org/10.1126/science.1154643
http://dx.doi.org/10.1038/nphoton.2008.226
http://dx.doi.org/10.1038/nphoton.2008.226

